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Granular polymer solution
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We have measured the spectrum of fluctuations in the size of a granular polymer in a granular solvent. The
system consists of a linear chain of plastic spheres immersed in a planar fluid of self-propelled balls. The time
average of the end-to-end lengthr of the chain scales with the number of linksN according tô r 2&;N2n, with
n50.7560.01. This provides an experimental test of the theoretical valuen5

3
4 of the critical exponent for a

self-avoiding random walk in two dimensions. The measured probability distributionP(r ) is compared with
the universal function of the scaling theory.
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Granular matter consists of macroscopic particles~balls,
beads, grains, sand, etc.! that can be agitated into fluidlike
motion by external forces@1#. Recently, there has been inte
est in velocity fluctuations in granular gases@2–4# and knots
in granular chains@5#. In these experiments, the motion
the grains~steel spheres! is driven by vibrating the container
In this paper, we study a granular polymer solution, cons
ing of a chain of plastic spheres surrounded by a fluid
self-propelled balls. The motion of the chain is driven by t
random collisions of the balls against the chain. T
Brownian-like force of agitation mimics the natural drivin
force of molecular motion. The granular solution represen
mechanical model of a linear polymer in a planar solve
The granular chain is an experimental realization of a s
avoiding random walk, which is the theoretical model for
polymer with excluded volume. Theoretical studies of t
self-avoiding random walk in two dimensions are abunda
but experimental tests of the two-dimensional theories
scarce. A molecular polymer can be confined to a region
is at best quasi-two-dimensional and tends to uncoil~expand!
when adsorbed onto a flat surface. Our granular polyme
flexible and exactly two-dimensional. It is an experimen
system that is architecturally equivalent to the theoret
model.

A fundamental quest of polymer statistics is to find t
average size of a long flexible chain. For a self-avoid
random walk ind-dimensions, scaling theory@6–8# predicts
that the mean-square end-to-end length^r 2& of the walk
obeys the power-law relation̂r 2&;N2n, where N is the
number of steps in the walk andn is a universal critical
exponent that depends only ond. For d53, the exact value
of n is unknown, although theory and experiment@7,8# pre-
dict the value 0.59. Ford52, analytical theories@6–9#,
based on field theory, spin models, and the renormaliza
group, predict the exact valuen5 3

4 . Extensive computer
studies@7,8#, based on exact enumeration and Monte Ca
simulation, predict numerical values ofn that are consisten
with this analytical value. The radius of gyration expone
which is theoretically equivalent to the end-to-end expone
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has recently been measured for DNA bound to a fluid lip
membrane@10# and found to be 0.7960.04. Scaling theory
predicts that the probability distributionP(r ) of the end-to-
end lengthr is a universal function of the scaled lengthr /Nn

@6–8#. Recently @11#, this function has been numericall
computed using Monte Carlo simulation, and analytica
calculated to second order ine[42d using renormalization
group theory. To our knowledge, the end-to-end distribut
P(r ) has never been experimentally measured. In this pa
we present a direct measurement of the end-to-end expo
n and distributionP(r ). This provides a granular test of th
two-dimensional theory of the self-avoiding random wa
using an exactly-planar polymer solution.

There are two levels of granularity in our experiment:
granular system of connected spheres~polymer! interacting
with a granular environment of self-propelled balls~solvent!.
The spheres are ping-pong balls, each of mass 2.2 g
radius 1.9 cm. The spheres are linked together on a si
thread so as to form a linear chain. Neighboring spheres
separated by spacers 7.0 mm in length. The spacers a
rigid bonds that freely rotate. The self-propelled balls a
motorized balls, known commercially as ‘‘squiggle balls
Each ball has a mass of 120 g and a radius of 4.0 cm
battery-powered motor inside the ball rotates its plastic s
at approximately 3 rev/s. When placed on a surface, the
rolls without slipping. During a collision, the ball rebound
in a random direction. In a system of balls, each ball mo
with a distribution of speeds between 0 m/s and about 0
m/s. During a sufficiently long time, each ball appears
visit every square centimeter~cell! of the surface~phase
space!. In this sense, the motion of these ‘‘motorized mo
ecules’’ is ergodic. Motorized molecules have recently be
used to illustrate the fundamental principles of statistical m
chanics, including the fundamental postulate, the ergodic
pothesis, and the canonical statistics@12#. A schematic of the
granular polymer solution is shown in Fig. 1. The line
chain and the motorized balls are confined to a tw
dimensional container consisting of a horizontal surface
a circular wall. One end of the chain is attached to the cen
of the area. The length of the completely stretched chai
less than the radius of the container. The inner surface of
circular wall has irregularities, in the form of wavy protru
sions, to help randomize the motion of the balls. The c
centration of motorized balls is approximately 50 balls/m2.

d,
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Until now, experiments@2–4# have focused on the veloc
ity states of a granular gas~unconnected grains! using an
electromechanical vibrator to shake the walls of the c
tainer. This source of agitation isextended, peripheral, and
periodic. In our experiment, we focus on the position stat
or conformations, of a granular polymer~chain of grains!.
The energy source is a set of electromechanical balls mo
randomly within the container. This source of agitation
granular, internal, andrandom. The ‘‘thermal reservoir’’ of
motorized balls provides the ‘‘temperature bath’’ that allo
the polymer to explore phase space. The temporal sequ
of states that the chain visits during its dynamical evolut
corresponds to the set of random conformations of a s
avoiding random walk in two dimensions.

The experiment consists of measuring the end-to-
lengthr (t) of the chain as a function of time. The free end
the chain is marked with a different color than the rest of
chain. This is the granular analogue of labeling elements
molecular polymer, via deuterium substitution, in order
measure correlation functions in neutron scattering exp
ments. In our experiment, a video camera mounted above
center of the container records the motion of the granu
polymer. The mean-square end-to-end length^r 2& of the
chain is defined as the time average of the dynamical fu
tion r 2(t):

^r 2&[
1

t E0

t

r 2~ t ! dt.

We have measuredr (t) and computed̂ r 2& of chains con-
taining N links for 5<N<15. Each link has unit length
Thus for a chain withN links, the minimum end-to-end
length is r 50 ~closed loop! and the maximum end-to-en
length isr 5N ~straight line!. Data was recorded at a vide
rate of two frames per second, while the collision rate of
solvent balls with the chain was on the order of five balls
second. The observation timet ranged from 1000 second
for N55 to 1600 seconds forN515. These values oft are
long enough to ensure that the time average ofr (t) is inde-
pendent oft. We tested this ergodic behavior by compari

FIG. 1. The granular polymer solution consists of a linear ch
of plastic spheres immersed in a planar fluid of self-propelled ba
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^r 2& for different subsets of the total observation time a
found good agreement. It appears that during the time in
val of observation, the chain uniformly visits a cours
grained volume of phase space that is representative of
equilibrium state of a self-avoiding random walk.

The experimental data,^r 2& as a function ofN, is graphed
as a log–log plot in Fig. 2. For comparison, we also gra
the theoretical data based on the exact enumeration of
avoiding walks on the square lattice@8# and the triangular
lattice @13#. The error in each value of̂r 2&, which is less
than 3%, is too small to appear on the graph. Note that
theoretical results are based on spatial averages of a s
particle walking in a discrete~lattice! space, while the ex-
perimental results are based on temporal averages of a s
chain meandering in a continuum~off-lattice! space. The
graphs in Fig. 2 show that the theoretical data for the s
avoiding walks closely matches the experimental data for
granular polymer. Even for these modest values ofN, the
data points form a straight line. The slopes of the bes
lines in Fig. 2 are 1.45~square-lattice theory!, 1.46
~triangular-lattice theory!, and 1.47~granular polymer ex-
periment!. Note that the triangular lattice has a higher co
nectivity than the square lattice and thus provides a be
approximation to the off-lattice topology. The slopes of t
best-fit lines through large N subsets of the experimental d
points are 1.55 (N510– 15), 1.60 (N511– 15), 1.50 (N
512– 15), and 1.42 (N513– 15), whose average is 1.5
The slope values, 1.47 and 1.52, for the granular-polym
system are consistent with the conjectured exact value,n
53/2, for the self-avoiding random walk in two dimension
Note that for a random walk, the exact value is 2n51 in any
dimension. It is well known that critical exponents can reve
their identity in walks of modest length (N'15), even
though in principle the exponents are defined for walks
infinite length @8#. Another technique to extract the critica
exponent from finite-N data is to construct a converging s
quence of approximate exponents@8#. Let the average length

n
s.

FIG. 2. The scaling behavior^r 2&;N2n. Experimental data~d!
for the granular polymer are compared with the theoretical data
self-avoiding random walks on the triangular~m! and the square
~j! lattices. To distinguish the three lines, the theoretical val
^r 2& have been multiplied by a constant. The slopes of the bes
lines are 1.47~d!, 1.46 ~m!, and 1.45~j!.
6-2
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GRANULAR POLYMER SOLUTION PHYSICAL REVIEW E65 031306
of a chain containingN links be denoted byRN[^r 2&1/2.
From the measured values ofRN and RN2J , we calculate
nN,J[@ ln(RN /RN-J)#/ln@N/(N2J)#. A graph ofnN,1 as a func-
tion of 1/N is shown in Fig. 3. The values ofnN,1 oscillate
around the value 0.75 with decreasing amplitude asN in-
creases. Similar damped oscillations occur in computer
periments@8#. To reduce the effect of the oscillations, w
compute the sequencenN,2 which is graphed in Fig. 3.

Based on the linearity of the granular-polymer data,
slopes of the best-fit lines, and the converging sequence
log-ratio exponents, we conclude that^r 2&;N2n, with n
50.7560.01. This value of the end-to-end exponent a
reflects the close agreement~equality of slopes within 0.68–
1.4 %! between the granular-polymer data and the exa
enumeration data as displayed in Fig. 2. An analysis of
exact-enumeration data corresponding to a similar rangeN
as the granular-polymer data predicts values of the crit
exponent between 0.745 and 0.750@8#. The radius of gyra-
tion exponent for adsorbed molecular polymers has b
measured to be 0.7960.04 @10# and 0.7960.01 @14#.

The spectrum of fluctuations in the end-to-end lengthr of
the polymer chain is characterized by the probability dis
bution P(r ). The end-to-end distribution has been theore
cally studied in all dimensions@7,11# and numerically simu-
lated in two@15# and three@11,15–17# dimensions, but to our
knowledge has never been experimentally measured.
measured distribution for a granular polymer withN512
monomers is shown in Fig. 4. For comparison, we also gr
the random-walk distribution,br exp(2cr2) where b and c
are normalization constants, and the Mazur distributi
br exp(2cr7). The Mazur distribution, originally formulated
to fit the exact-enumertion data of self-avoiding walks on
square lattice@15#, is a purely empirical distribution and i
used here solely because it provides a simple modified
sion of the Gaussian distribution that visually fits the gran
lar polymer data. The shape of the granular polymer dis
bution clearly displays the major effect of the self-avoidi
interaction on the random-walk statistics, namely, to conc
trate the distribution around the average value@18#.

Theories@6–8# of the self-avoiding walk ind dimensions
predict that the limiting (N→`) form of the distribution
function of the end-to-end vectorr is P(r )5R2df (r /R),

FIG. 3. Convergence of the critical exponentnN,J asN→` for
~a! J51 and~b! J52.
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wherer[ur u, R[^r 2&1/2, and f (x) is a universal function of
the scaled lengthx[r /R. Compared to the universal expo
nentn, not much is known about the universal functionf (x).
In theory, only the asymptotic behavior off (x) for x!1 and
x@1 is known with rigor@7#. A phenomenological represen
tation of f (x) for all x, motivated by scaling and
renormalization theories, has been proposed@7,19#: f (x)
5Axu exp(2Bxd). The exponentsu and d are related to the
fundamental universal exponentsn andg: d51/(12n) and
u5(g21)/n @7#. The constantsA andB depend onu andd
via the normalization conditions onP(r ) and^r 2&. The dis-
tribution based on this scaling function, which is referred
as the des Cloizeaux distribution, has been shown to pro
an accurate fit to the largeN numerical data based on Mont
Carlo simulations of self-avoiding walks in two@15# and
three @11,15–17# dimensions. Experimental data would b
worthwhile.

In Fig. 5, we graph the scaled distribution function f
granular polymer chains withN ranging from 10 to 15. Even

FIG. 4. Probability distributionP(r ) of the end-to-end lengthr
of a granular polymer chain~h! with 12 links. The bold curve
through the experimental data points is the Mazur distribution fo
self-avoiding random walk, and the light curve is the Gaussian
tribution for a random walk, both with the same^r 2&1/256.15 as the
granular chain.

FIG. 5. The scaled probability distributionRP(r ), with R
[^r 2&1/2, as a function of the scaled end-to-end lengthr /R for
granular polymer chains with different number of links,N510 ~s!,
11 ~h!, 12 ~n!, 13 ~3!, 14 ~1!, 15 ~L!. The theoretical~solid!
curve is the limiting (N→`) distribution based on the universa
scaling function of des Cloizeaux.
6-3
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JEFFREY J. PRENTIS AND DANIEL R. SISAN PHYSICAL REVIEW E65 031306
for these modest values ofN, a universal behavior is
evident—the scaled data representing different chains ten
cluster together so as to form a single experimental cu
For comparison, we also show the theoretical curve defi
by the universal des Cloizeaux distribution:RP(r )52px
f (x), where f (x)50.257x11/24exp(20.421x4). We calcu-
lated the exponents and the coefficients in this scaling fu
tion using the exact two-dimensional valuesn5 3

4 and g
5 43

32 @7#. Figure 5 shows that the largeN theoretical distri-
bution approximates the overall shape of the smallN granu-
lar polymer distribution. The deviations near the origin a
the peak are consistent with Monte Carlo predictions@15–
17#. Whereas the second moment^r 2& of the granular poly-
mer distribution converges to its limiting form for relative
small values ofN, it appears that the distributionP(r ) itself
converges for larger values.
od

ol
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In conclusion, we have presented a granular model o
polymer solution—a granular polymer in a granular solve
Since the granular polymer is self-avoiding, freely jointe
and exactly planar, it is an ideal system with which to test
theories of polymers and self-avoiding random walks in t
dimensions. We find that the granular polymer is a critic
object whose size scales with its mass according to the po
law ^r 2&;N2n. The measured value of the critical expone
n50.7560.01, agrees with the long-standing theoretic
conjecture,n5 3

4 . Self-propelled balls provide a Brownian
like driving force that can be used as the source of agita
for other granular matter. A fluid of motorized molecules
itself a novel dynamical system that can provide insight in
the statistical mechanics of a fluid of natural molecules.

We thank Jeffrey Nazarko for his contribution to the ea
stage of this research.
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